-->

iklan banner

Soal Soal Persamaan Bulat Beserta Jawabannya

Soal Soal Persamaan Lingkaran Beserta Jawabannya - Persamaan bulat sanggup dibagi menjadi beberapa macam bentuk. Adapun bentuk persaaan lingkarannya yaitu pembentukan persamaan yang berasal dari jari jari dan titik pusat. Selain itu, sebuah bulat sanggup dicari persamaannya melalui jari jari maupun titik pusatnya. Nah pada kesempatan kali ini aku akan membagikan beberapa soal persamaan bulat beserta jawabannya. Untuk lebih jelasnya sanggup anda simak di bawah ini.
Soal Soal Persamaan Lingkaran Beserta Jawabannya Soal Soal Persamaan Lingkaran Beserta Jawabannya
Soal Persamaan Lingkaran Beserta Jawabannya
Sebenarnya kita sanggup menemukan banyak sekali pola soal persamaan bulat maupun soal matematika lainnya kalau kita mencari di banyak sekali sumber baik offline maupun online. Misalnya saja melalui buku pelajaran yang diberikan sekolah, atau kita sanggup membeli buku latihan soal yang didalamnya memuat bahan persamaan lingkaran. Dalam buku tersebut tentunya dijelaskan pula bagaimana cara menghitung persamaan bulat dengan terang dan lengkap.

Soal Soal Persamaan Lingkaran Beserta Jawabannya

Materi persamaan bulat telah dipelajari dikala di dingklik Sekolah Menengah Atas (SMA) dan sederajat. Materi ini membahas seluk beluk ihwal lingkaran. Di bawah ini terdapat beberapa soal persamaan bulat beserta jawabannya. Berikut ulasan selengkapnya:

1. Persamaan bulat yang melalui titik (3,-2) dan mempunyai titik sentra (3,4) yakni . . .
    a. x² - y² - 6x - 8y - 11 = 0
    b. x² + y² - 6x - 8y - 11 = 0
    c. x² + y² - 6x - 8y + 25 = 0
    d. x² - y² - 3x - 4y - 11 = 0
    e. x² - y² - 4x - 5y - 10 = 0

Jawaban : B
Baca juga : Rumus Penjumlahan Matriks dan Pengurangan Matriks
Pembahasan:
Diketahui titik (3,-2) dan sentra (3,4)
Cari nilai r terlebih dahulu melalui rumus di bawah ini:
 (x - a)² + (y - b)² = r²
(3 - 3)² + (-2 - 4)² = r²
                  0 + 36 = r²
                           r = √36
                           r = 6
Kaprikornus persamaan lingkarannya ialah:
             (x - a)² + (y - b)² = r²
             (x - 3)² + (y - 4)² = 6²
x² - 6x + 9 + y² - 8y + 16 = 36
      x² + y² - 6x - 8y + 25 = 36
       x² + y² - 6x - 8y - 11 = 0

2. Persamaan garis singgung bulat yang titiknya (5,2) di x² + y² - 4x + 2y - 10 = 0 yakni . . .
    a. 3x + 3y - 18 = 0
    b. 3x + 3y + 18 = 0
    c. x + 3y - 10 = 0
    d. 5x + 2y - 10 = 0
    e. x + 3y - 12 = 0

Jawaban : A

Pembahasan:
Diketahui persamaan bulat x² + y² - 4x + 2y - 10 = 0 yang titiknya (5,2)
Untuk mencari garis singgung lingkarannya sanggup memakai rumus di bawah ini:
Soal Soal Persamaan Lingkaran Beserta Jawabannya Soal Soal Persamaan Lingkaran Beserta Jawabannya
Jawaban Soal Persamaan Lingkaran No. 2

3. Persamaan bulat L = (x - 5)² + (y - 1)² = 1 memotong garis y = 1. Hitunglah persamaan garis singgung lingkarannya?
    a. x = 4 dan x = 4
    b. x = 2 dan x = 3
    c. x = 2 dan x = 2
    d. x = 5 dan x = 2
    e. x = 6 dan x = 4

Jawaban : E

Pembahasan:
Diketahui persamaan bulat (x - 5)² + (y - 1)² = 1, y = 1 di titik:
(x - 5)² + (y - 1)² = 1
(x - 5)² + (1 - 1)² = 1
         (x - 5)² + 0 = 1
x - 5 = 1 atau x - 5 = -1
     x = 6 atau       x = 4
Kaprikornus terdapat dua titik potong yaitu (6,1) dan (4,1)

Kemudian hitung persamaan lingkarannya ibarat di bawah ini:
               (x - 5)² + (y - 1)² = 1
x² - 10x + 25 + y² - 2y + 1 = 1
      x² + y² - 10x - 2y + 26 = 1
     x² + y² - 10 x - 2y + 25 = 0

Persamaan garis singgung yang melalui titik (6,1) terhadap bulat L ialah:
  x1.x + y1.y + a (x1 + x) + b (y1 + y) + c = 0
6x + y - ½ . 10 (6 + x) - ½ . 2 (1 + y) + 25 = 0
              6x + y - 5 (6 + x) - 1 (1 + y) + 25 = 0
                       6x + y - 30 - 5x - 1 - y + 25 = 0
                                                           x - 6 = 0
                                                                x = 6

Persamaan garis singgung yang melalui titik (4,1) terhadap bulat L ialah:
  x1.x + y1.y + a (x1 + x) + b (y1 + y) + c = 0
4x + y - ½ . 10 (4 + x) - ½ . 2 (1 + y) + 25 = 0
              4x + y - 5 (4 + x) - 1 (1 + y) + 25 = 0
                       4x + y - 20 - 5x - 1 - y + 25 = 0
                                                         -x + 4 = 0
                                                                -x = -4
                                                                 x = 4

4. Persamaan bulat yang menyinggung sumbu Y dengan titik sentra (4,-3) yakni . . .
    a. x² - y² - 8x - 6y - 9 = 0
    b. x² + y² - 8x + 6y + 9 = 0
    c. x² + y² - 6x - 8y + 11 = 0
    d. x² - y² - 2x + 5y - 11 = 0
    e. x² - y² - 4x - 5y - 10 = 0

Jawaban : B

Pembahasan:
Persamaan bulat yang berpusat pada titik (a,b) mempunyai rumus (x - a)² + (y - b)² = r²
Menyinggung sumbu Y maka jari jarinya yakni x = 4 (titik pusatnya {4,-3})
Masukkan kedalam rumus, sehingga menjadi:
              (x - a)² + (y - b)² = r²
             (x - 4)² + (y + 3)² = 4²
x² - 8x + 16 + y² + 6y + 9 = 16
      x² + y² - 8x + 6y + 25 = 16
        x² + y² - 8x + 6y + 9 = 0

5. Diketahui persamaan bulat x² - 6x + y² + 6 = 0 di sumbu Y. Berapakah jarak antara titik sentra lingkarannya?
    a. 1
    b. 2
    c. 3
    d. 4
    e. 5
Baca juga : Satuan Volume Beserta Contoh Soalnya (Cara Mudah)
Jawaban : C

Pembahasan:
Lingkaran yang berpusat pada (-a,-b) mempunyai persamaan x² + y² + 2ax + 2by + c = 0
Maka akan menjadi (-½ .(-6) , - ½ . 0) = (3,0)
Kaprikornus titik pusatnya menjadi (3,0) di sumbu Y sehingga jari jarinya yakni x = 3

6. Persamaan bulat (x - 4)² + (y + 2)² = 4 menyinggung garis x = 2 di titik . . .
    a. (2,-2)
    b. (3,-2)
    c. (2,4)
    d. (-2,-2)
    e. (3,5)

Jawaban : A

Pembahasan:
garis x = 2 menyinggung bulat yang persamaannya (x - 4)² + (y + 2)² = 4
Maka:
(x - 4)² + (y + 2)² = 4
(2 - 4)² + (y + 2)² = 4
    4 + y² + 4y + 4 = 4
          y² + 4y + 8 = 4
          y² + 4y + 4 = 0
      (y + 2)(y + 2) = 0
                          y = -2
Kaprikornus bulat tadi menyinggung titik (2, -2)

7. Hitunglah persamaan bulat yang menyinggung garis 6x + 8y + 10 = 0 berpusat di bulat x² + y² - 6x + 8y -19 = 0?
    a. (x - 3)² + (y + 4)² = 26
    b. (x - 2)² + (y + 3)² = 26
    c. (x - 3)² + (y + 4)² = 36
    d. (x - 2)² + (y + 4)² = 42
    e. (x - 3)² + (y + 5)² = 36

Jawaban : C

Pembahasan:
Persamaan bulat x² + y² + 2ax + 2by + c = 0 mempunyai sentra yang titiknya (-a,-b) sehingga (-½ . (-6), -½ . 8) = (3,-4)

Maka dari itu titik sentra (3,-4) mempunyai persamaan garis ibarat di bawah ini:
(x - 3)² + (y + 4)² = r²

Hitung jari jari bulat yang pusatnya (3,-4) menuju garis 6x + 8y + 10 = 0, sehingga menjadi:
Soal Soal Persamaan Lingkaran Beserta Jawabannya Soal Soal Persamaan Lingkaran Beserta Jawabannya
Masukkan nilai r kedalam persamaan lingkarannya, sehingga menjadi:
(x - 3)² + (y + 4)² = r²
(x - 3)² + (y + 4)² = 6²
(x - 3)² + (y + 4)² = 36
Baca juga : Rumus Persamaan Kuadrat Matematika Beserta Contoh Soal
8. Diketahui bulat mempunyai jari jari 10 dengan persamaan x² + y² + 2px + 20y + 16 = 0 menyinggung sumbu X. Kaprikornus bulat tersebut mempunyai titik pusat?
    a. (-4,-10)
    b. (4,-10)
    c. (-3,-4)
    d. (-2,-5)
    e. (-3,-2)

Jawaban : B

Pembahasan:
Hitung nilai p memakai rumus jari jari di bawah ini:
Soal Soal Persamaan Lingkaran Beserta Jawabannya Soal Soal Persamaan Lingkaran Beserta Jawabannya
p = ± 4 maka persamaannya akan menjadi:
  x² + y² + 2px + 20y + 16 = 0
x² + y² + 2(4)x + 20y + 16 = 0
     x² + y² + 8x + 20y + 16 = 0

Persamaan x² + y² + 8x + 20y + 16 = 0 mempunyai titik sentra (-½ . 8 , -½ . 20) = (-4,-10)
Titik sentra (-4,-10) mempunyai persamaan bulat ibarat di bawah ini:
    x² + y² + 2px + 20y + 16 = 0
x² + y² + 2(-4)x + 20y + 16 = 0
       x² + y² - 8x + 20y + 16 = 0
Sehingga diperoleh titik sentra = (-½ . -8 , -½ . 20) = (4,-10)

9. Persamaan garis singgung pada bulat x² + y² - 2x + 4y - 6 = 0 melalui titik (3,1) yakni . . .
    a. 2x + 3y - 7 = 0
    b. 2x + 3y + 7 = 0
    c. x + 3y - 10 = 0
    d. 5x + 2y - 10 = 0
    e. x + 3y - 12 = 0

Jawaban : A

Pembahasan:
Diketahui persamaan bulat x² + y² - 2x + 4y - 6 = 0 yang titiknya (3,1)
Untuk mencari garis singgung lingkarannya sanggup memakai rumus di bawah ini:
 x1.x + y1.y + a (x1 + x) + b (y1 + y) + c = 0
3x + y + ½ (-2) (3 + x) + ½ . 4 (1 + y) - 6 = 0
                3x + y - 1 (3 + x) + 2 (1 + y) -6 = 0
                         3x + y - 3 - x + 2 + 2y - 6 = 0
                                                2x + 3y - 7 = 0

Sekian soal soal persamaan bulat beserta jawabannya yang sanggup aku bagikan. Semoga artikel ini sanggup bermanfaat. Terima kasih.

Sumber http://materi4belajar.blogspot.com

Berlangganan update artikel terbaru via email:

0 Response to "Soal Soal Persamaan Bulat Beserta Jawabannya"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel