Hidrologi Pertanian
IDENTIFIKASI AIR TANAH DAN PEMANFAATANYA UNTUK PERTANIAN
Air Tanah
Air tanah merupakan komponen dari suatu sistem daur hidrologi (hydrology cycle) yang terdiri rangkaian proses yang saling berkaitan antara proses atmosferik, proses hidrologi permukaan dan proses hidrologi bawah permukaan (Gambar 1). Siklus hidrologi yaitu sirkulasi air yang tidak pernah berhenti dari atmosfir ke bumi dan kembali ke atmosfir melalui evaporasi , transpirasi, kondensasi dan presipitasi. Di luar sistem tersebut problem air tanah bahkan seringkali melibatkan aspek politik dan sosial budaya yang sangat memilih keberadaan air tanah di suatu daerah. Siklus hidrologi menggambarkan hubungan antara curah hujan, anutan permukaan, infiltrasi, evapotranspirasi dan air tanah. Sumber air tanah berasal dari air yang ada di permukaan tanah (air hujan, air danau dan sebagainya) kemudian meresap ke dalam tanah/akuifer di daerah imbuhan (recharge area) dan mengalir menuju ke daerah lepasan (discharge area). Menurut Direktorat Tata Lingkungan Geologi dan Kawasan Pertambangan anutan air tanah di dalam akuifer dari daerah imbuhan ke daerah lepasan cukup lambat, memerlukan waktu usang bisa puluhan hingga ribuan tahun tergantung dari jarak dan jenis batuan yang dilaluinya. Pada dasarnya air tanah termasuk sumber daya alam yang sanggup diperbaharui akan tetapi kalau dibandingkan dengan waktu umur insan air tanah bisa digolongkan kepada sumber daya alam yang tidak terbaharukan.
Di dalam tanah keberadaan air mengisi sebagian ruang pori-pori tanah yang bisa dimanfaatkan eksklusif oleh tumbuhan pada kondisi kelembaban tanah antara kapasitas lapang hingga titik layu permanen pada posisi zona aerasi. Di bawah zona aerasi terdapat zona penjenuhan yang menempatkan air mengisi seluruh ruang pori-pori tanah yang ada dengan kisaran tebal yang selalu berfluktuasi.
Debit dan keberadaan muka air tanah pada zone penjenuhan ini sangat dipengaruhi oleh pasokan air dari daerah imbuhan (recharge zone) yang berada di atasnya, semakin banyak pasokan yang diimbuhkan semakin banyak debit yang tersimpan dalam zone ini. Keberadaan air tanah pada zone ini seringkali disebut sebagai air (tanah) bebas. Ketebalan air bebas yang ada dalam tanah bisa mencapai puluhan meter tergantung dari letak lapisan batuan padu (consolidated rock) yang ada di bawahnya. Lapisan batuan padu (batuliat, batupasir, batugamping, batuan kristalin, dan shale) yang mengandung air tanah dalam lubang pelarutan, atau di rekahan batuan (lapisan batuan pembawa air tanah) disebut sebagai akuifer.
Air tanah yaitu semua air yang terdapat pada lapisan pengandung air (akuifer) di bawah permukaan tanah, mengisi ruang pori batuan dan berada di bawah water table. Akuifer merupakan suatu lapisan, deretan atau kumpulan deretan geologi yang jenuh air yang memiliki kemampuan untuk menyimpan dan meluluskan air dalam jumlah cukup dan ekonomis, serta bentuk dan kedalamannya terbentuk ketika terbentuknya cekungan air tanah. Cekungan air tanah yaitu suatu wilayah yang dibatasi oleh batas hidrogeologis, tempat semua insiden hidrogeologis ibarat proses pengimbuhan, pengaliran, dan pelepasan air tanah berlangsung. Potensi air tanah di suatu cekungan sangat tergantung kepada porositas dan kemampuan batuan untuk meluluskan (permeability) dan meneruskan (transmissivity) air. Kelulusan tanah atau batuan merupakan ukuran gampang atau tidaknya materi itu dilalui air. Air tanah mengalir dengan laju yang berbeda pada jenis tanah yang berbeda. Air tanah mengalir lebih cepat melalui tanah berpasir tetapi bergerak lebih lambat pada tanah liat.
Bagaimana Mengidentifikasinya?
Pengukuran karakteristik air tanah dilakukan dengan menggunakan alat resistivity meter/terameter (Gambar 2). Pengukuran dilakukan di lapangan dengan memilih titik deteksi terameter menurut jenis tanah, kondisi geologi, dan hidrogeologinya. Untuk ketepatan penentuan titik dan mempermudah deteksi terlebih dahulu dilakukan penentuan posisi titik menggunakan GPS (Geo Posizioning System) selanjutnya dilakukan deteksi untuk memilih ketahanan jenis semu dan kedalaman overburden dan akuifernya di lapangan. Titik yang dideteksi yaitu yang memenuhi kriteria sebagai berikut: (a) berada pada hamparan 600 m dengan topografi datar, (b) jauh dari kawat berduri dan besi dalam tanah, dan (c) jauh dari tegangan tinggi.
Terameter bekerja dengan cara menembakkan arus listrik ke dalam tanah dengan menggunakan elektrode-elektrode ke dalam tanah dan mengambil nilai hambatannya dalam dimensi waktu respon, alat ini sanggup memperlihatkan material di bawah permukaan bumi pada kedalaman lebih dari 200 meter tanpa melalui pengeboran. Dari data sifat kelistrikan material bawah tanah terutama batuan yang berupa besaran tahanan jenis (resistivity), masing-masing dikelompokkan dan ditafsirkan dengan mempertimbangkan data kondisi geologi setempat yang ada.
Gambar 2. Alat pengukur air tanah (terameter) dan pengukuran air tanah di lapangan.
Perbedaan sifat kelistrikan batuan antara lain disebabkan oleh perbedaan macam mineral penyusun, porositas dan permeabilitas batuan, kandungan air, suhu, dan sebagainya. Dengan mempertimbangkan beberapa faktor di atas, sanggup diintepretasikan kondisi air bawah tanah di suatu daerah, yaitu dengan melokalisir lapisan batuan berpotensi air bawah tanah.
Pengukuran besarnya tahanan jenis batuan di bawah permukaan tanah dengan menggunakan metode Vertical Electrical Sounding (VES) dilakukan untuk mengetahui susunan lapisan batuan bawah tanah secara vertikal, yaitu dengan cara memperlihatkan arus listrik ke dalam tanah dan mencatat perbedaan potensial terukur. Nilai tahanan jenis batuan yang diukur eksklusif di lapangan yaitu nilai tahanan jenis semu (apparent resistivity), dengan demikian nilai tahanan jenis di lapangan harus dihitung dan dianalisis untuk mendapat nilai tahanan jenis bergotong-royong (true resistivity) dengan metode Schlumberger. Selanjutnya untuk pengolahan dan perhitungan data lapangan untuk mendapat nilai tahanan jenis yang sebenarnya, serta intepretasi kedalaman dan ketebalannya dipakai perangkat lunak komputer. Berdasarkan nilai tahanan jenis sebenarnya, maka sanggup dilakukan interpretasi macam batuan, kedalaman, ketebalan, dan kemungkinan kandungan air bawah tanahnya, sehingga didapatkan citra daerah-daerah yang berpotensi mengandung air bawah tanah serta sanggup ditentukan rencana titik-titik pemboran air bawah tanah.
Seperti apa balasannya dan bagaimana memanfaatkan datanya ?
Berdasarkan hasil pengukuran lapang dibentuk kurva resistivity semu, kemudian diinterpretasikan dengan menggunakan software IPI2WIN. Software ini akan menghasilkan resistivitas yang aktual untuk masing-masing lapisan menurut kurva resistivitas semu dengan menggunakan algoritma Newton untuk meminimalisir regularized fitting error secara otomatis. Hasil interpretasi grafik resistivitas disajikan pada Gambar 3.
Gambar 3: Hasil interpretasi grafik resistivitas
Selanjutnya sanggup diidentifikasi jenis lapisan yang merfleksikan lapisan overburden yang bersifat kurang dan tidak lulus air dengan nilai resistivitas berkisar 350 Ohm meter.
Secara umum hasil identifikasi air tanah menyajikan citra stratifikasi Hidrogeologi dari penampang tanah yang diukur resivitasntya mulai dari lapisan atas ke bawah adalah. Letak kedalaman dan ketebalan dari setiap komponen stratifikasi geologi di setiap blok yang diamati bervariasi yang mencerminkan dinamika letak dan potensi air tanah yang ada di titik pengukuran dan biasanya memiliki urutan stratifikasi dari lapisan atas kebawah yaitu Overbuden, Aquifer1, Aquitard1, Aquifer2 dan Aquitard2 ibarat yang diilustrasikan pada gambar 4.
Overburden adalah: lapisan partikel tanah, batuan atau material lainya yang berada di atas batuan induk atau lapisan lain yang memiliki nilai ilmiah atau nilai hemat ibarat materi tambang( emas, kerikil bara, minyak bumi dan lainya) atau air tanah.
Aquifer yaitu lapisan di bawah permukaan tanah yang terdiri dari deretan atau kelompok deretan satuan geologi yang tembus air (permeable) baik yang terkonsolidasi (misalnya lempung) maupun yang tidak terkonsolidasi (pasir) dengan kondisi jenuh air dalam jumlah yang cukup banyak.
Aquitard yaitu lapisan, formasi, atau kelompok deretan geologi yang lulus air (permable) dengan nilai konduktivitas hidraulik yang kecil namun masih memungkinkan air melewati lapisan ini walaupun dengan gerakan yang lambat. Dapat dikatakan juga merupakan lapisan pembatas atas dan bawah suatu lapisan aquifer setengah tertekan (semi confined aquifer).
Berdasarkan letak dan potensinya akuifer dibedakan menjadi akuifer bebas, akuifer setengah tertekan dan akuifer tertekan.
Akuifer bebas yaitu akuifer yang memiliki bidang penggalan atas berupa zona tidak jenuh air dan dibatasi oleh muka air bawah tanah. Besarnya kandungan dan luas penyebaran air bawah tanah yang tersimpan di dalam akuifer bebas sangat dipengaruhi oleh iklim terutama curah hujan, relief dan kemiringan lahan, jenis litologi, vegetasi dan kondisi lingkungan, dengan demikian debitnya sangat dipengaruhi oleh keseimbangan antara imbuhan (recharge) dari lingkungan sekitarnya (air hujan dan rembesan samping) dengan volume yang di eksploitasi.
Akuifer setengah tertekan yaitu Merupakan akuifer yang jenuh air yang dibatasi oleh lapisan atas berupa aquitard dan lapisan bawahnya merupakan aquiclude. Pada lapisan pembatas di penggalan atasnya lantaran bersifat aquitard masih ada air yang mengalir ke akuifer tersebut (influx) walaupun hidraulik konduktivitasnya jauh lebih kecil dibandingkan hidraulik konduktivitas akuifer. Tekanan airnya pada akuifer lebih besar dari tekanan atmosfir.
Akuifer tertekan yaitu Merupakan akuifer yang jenuh air yang dibatasi oleh lapisan atas dan bawahnya merupakan aquiclude dan tekanan airnya lebih besar dari tekanan atmosfir. Pada lapisan pembatasnya tidak ada air yang mengalir (no flux).
Gambar 4: Ilustrasi penampang profil stratifkasi lapisan geohidrologi Kebun Surya Adi
Gambaran kuantitatif potensi air tanah di setiap lapisan tersebut umumnya disajikan dalam bentuk data tabular ibarat yang disajikan pada tabel 1 dan atau data grafik ibarat yang disajikan pada gambar 5.
Tabel 1. Hasil pengukuran air tanah yang memperlihatkan potensi, kedalaman, ketebalan dan kualitas air tanah
Gambar 5. Ilustrasi hasil pengukuran air tanah di Kodibangedo, Sumba Barat
Pemanfaatan data hasil pengukuran air tanah
Data hasil pengukuran air tanah sanggup dipakai sebagai dasar dalam memilih titik lokasi pembuatan sumur bor terutama untuk mengeksploitasi air tanah dalam. Di bidang pertanian penggunaan air tanah dalam sebagai alternatif irigasi suplementer merupakan salah satu pilihan untuk daerah pertanian yang memiliki hambatan keterbatasan air permukaan. Berdasarkan data hasil pengukuran air tanah, lokasi yang disarankan untuk dilakukan pengeboran yaitu air tanah dalam (akuifer tertekan) yang memiliki kedalaman lebih dari 40 meter, pertimbangannya yaitu pada kedalaman tersebut secara hidrogeologi umumnya air tanahnya merupakan air tanah dalam yangtidak dipengaruhi oleh kondisi fluktuasi air permukaan. Dengan demikian eksploitasi air tanah yang akan dilakukan tidak akan menjadi kompetitor pemanfaatan air untuk keperluan domestik. Untuk mengetahui potensi debit sumur yang akan dieksploitasi dilakukan uji pompa (pumping test) menggunakan pompa irigasi, alat pengukur kedalaman muka air tanah (contack gauge) serta stopwatch.
Pemanfaatan air tanah dalam sebagai alternatif irigasi suplementer
Dengan semakin terbatasnya ketersediaan air perrmukaan, pemanfaatan air tanah sebagai irigasi suplementer pada budidaya pertanian menjadi alternatif yang tidak terelakan. Tergantung kandungan potensinya, air tanah tidak hanya dimanfaatkan untuk irigasi suplementer tumbuhan semusim akan tetapi juga sanggup dijadikan sebagai solusi irigasi untuk tumbuhan tahunan. Tentu saja semoga pemanfaatan air tanah dalam untuk irigasi suplementer menjadi lebih efisien dibutuhkan proteksi analisis kebutuhan air tumbuhan untuk mendapat ketika tanam yang optimal semoga defisit air pada fase kritis pertumbuhan tumbuhan sanggup dihindari sehingga sanggup ditekan kehilangan hasil pada daerah-daerah yang pasokan airnya terbatas.
Beberapa pola pemanfaatan air tanah dalam untuk menjamin kesinambungan produksi dan produktivitas antara lain yaitu budidaya pertanian terpadu dengan komoditas jagung hibrida, sayuran, pakan ternak dan jarak pagar seluas 5 ha di Desa Bayan, Lombok Nusa Tenggara Barat (Gambar 6). Upaya pemanfaatan air tanah dalam sebagai alternatif irigasi suplementer pada kebun bibit kelapa sawit PT. Sampoerna Agro, TBK., di Mesuji, Ogan Komering Ilir, Sumatera Selatan ( Gambar 7) dan pendayagunaan sumberdaya air tanah untuk pengembangan komoditas sayuran, jagung dan kelapa di Amanuban Selatan, Kabupaten Timor Tengah Selatan, Nusa Tenggara Timur (Gambar 8).
Gambar 6. Pemanfaatan air tanah dalam sebagai alternatif irigasi suplementer pada budidaya pertanian terpadu dengan komoditas jagung hibrida, sayuran, pakan ternak dan jarak pagar seluas 5 ha di Desa Bayan, Lombok Nusa Tenggara Barat.
Gambar 7. Pemanfaatan air tanah dalam sebagai alternatif irigasi suplementer pada kebun bibit kelapa sawit PT. Sampoerno Agro, TBK., di Kecamatan Mesuji, Ogan Komering Ilir, Sumatera Selatan.
Gambar 8. Pendayagunaan sumberdaya air tanah untuk pengembangan komoditas sayuran, jagung dan kelapa di Amanuban Selatan, Kabupaten Timor Tengah Selatan, Nusa Tenggara Timur. Sumber http://hendrilune.blogspot.com/
Air Tanah
Air tanah merupakan komponen dari suatu sistem daur hidrologi (hydrology cycle) yang terdiri rangkaian proses yang saling berkaitan antara proses atmosferik, proses hidrologi permukaan dan proses hidrologi bawah permukaan (Gambar 1). Siklus hidrologi yaitu sirkulasi air yang tidak pernah berhenti dari atmosfir ke bumi dan kembali ke atmosfir melalui evaporasi , transpirasi, kondensasi dan presipitasi. Di luar sistem tersebut problem air tanah bahkan seringkali melibatkan aspek politik dan sosial budaya yang sangat memilih keberadaan air tanah di suatu daerah. Siklus hidrologi menggambarkan hubungan antara curah hujan, anutan permukaan, infiltrasi, evapotranspirasi dan air tanah. Sumber air tanah berasal dari air yang ada di permukaan tanah (air hujan, air danau dan sebagainya) kemudian meresap ke dalam tanah/akuifer di daerah imbuhan (recharge area) dan mengalir menuju ke daerah lepasan (discharge area). Menurut Direktorat Tata Lingkungan Geologi dan Kawasan Pertambangan anutan air tanah di dalam akuifer dari daerah imbuhan ke daerah lepasan cukup lambat, memerlukan waktu usang bisa puluhan hingga ribuan tahun tergantung dari jarak dan jenis batuan yang dilaluinya. Pada dasarnya air tanah termasuk sumber daya alam yang sanggup diperbaharui akan tetapi kalau dibandingkan dengan waktu umur insan air tanah bisa digolongkan kepada sumber daya alam yang tidak terbaharukan.
Di dalam tanah keberadaan air mengisi sebagian ruang pori-pori tanah yang bisa dimanfaatkan eksklusif oleh tumbuhan pada kondisi kelembaban tanah antara kapasitas lapang hingga titik layu permanen pada posisi zona aerasi. Di bawah zona aerasi terdapat zona penjenuhan yang menempatkan air mengisi seluruh ruang pori-pori tanah yang ada dengan kisaran tebal yang selalu berfluktuasi.
Debit dan keberadaan muka air tanah pada zone penjenuhan ini sangat dipengaruhi oleh pasokan air dari daerah imbuhan (recharge zone) yang berada di atasnya, semakin banyak pasokan yang diimbuhkan semakin banyak debit yang tersimpan dalam zone ini. Keberadaan air tanah pada zone ini seringkali disebut sebagai air (tanah) bebas. Ketebalan air bebas yang ada dalam tanah bisa mencapai puluhan meter tergantung dari letak lapisan batuan padu (consolidated rock) yang ada di bawahnya. Lapisan batuan padu (batuliat, batupasir, batugamping, batuan kristalin, dan shale) yang mengandung air tanah dalam lubang pelarutan, atau di rekahan batuan (lapisan batuan pembawa air tanah) disebut sebagai akuifer.
Air tanah yaitu semua air yang terdapat pada lapisan pengandung air (akuifer) di bawah permukaan tanah, mengisi ruang pori batuan dan berada di bawah water table. Akuifer merupakan suatu lapisan, deretan atau kumpulan deretan geologi yang jenuh air yang memiliki kemampuan untuk menyimpan dan meluluskan air dalam jumlah cukup dan ekonomis, serta bentuk dan kedalamannya terbentuk ketika terbentuknya cekungan air tanah. Cekungan air tanah yaitu suatu wilayah yang dibatasi oleh batas hidrogeologis, tempat semua insiden hidrogeologis ibarat proses pengimbuhan, pengaliran, dan pelepasan air tanah berlangsung. Potensi air tanah di suatu cekungan sangat tergantung kepada porositas dan kemampuan batuan untuk meluluskan (permeability) dan meneruskan (transmissivity) air. Kelulusan tanah atau batuan merupakan ukuran gampang atau tidaknya materi itu dilalui air. Air tanah mengalir dengan laju yang berbeda pada jenis tanah yang berbeda. Air tanah mengalir lebih cepat melalui tanah berpasir tetapi bergerak lebih lambat pada tanah liat.
Bagaimana Mengidentifikasinya?
Pengukuran karakteristik air tanah dilakukan dengan menggunakan alat resistivity meter/terameter (Gambar 2). Pengukuran dilakukan di lapangan dengan memilih titik deteksi terameter menurut jenis tanah, kondisi geologi, dan hidrogeologinya. Untuk ketepatan penentuan titik dan mempermudah deteksi terlebih dahulu dilakukan penentuan posisi titik menggunakan GPS (Geo Posizioning System) selanjutnya dilakukan deteksi untuk memilih ketahanan jenis semu dan kedalaman overburden dan akuifernya di lapangan. Titik yang dideteksi yaitu yang memenuhi kriteria sebagai berikut: (a) berada pada hamparan 600 m dengan topografi datar, (b) jauh dari kawat berduri dan besi dalam tanah, dan (c) jauh dari tegangan tinggi.
Terameter bekerja dengan cara menembakkan arus listrik ke dalam tanah dengan menggunakan elektrode-elektrode ke dalam tanah dan mengambil nilai hambatannya dalam dimensi waktu respon, alat ini sanggup memperlihatkan material di bawah permukaan bumi pada kedalaman lebih dari 200 meter tanpa melalui pengeboran. Dari data sifat kelistrikan material bawah tanah terutama batuan yang berupa besaran tahanan jenis (resistivity), masing-masing dikelompokkan dan ditafsirkan dengan mempertimbangkan data kondisi geologi setempat yang ada.
Gambar 2. Alat pengukur air tanah (terameter) dan pengukuran air tanah di lapangan.
Perbedaan sifat kelistrikan batuan antara lain disebabkan oleh perbedaan macam mineral penyusun, porositas dan permeabilitas batuan, kandungan air, suhu, dan sebagainya. Dengan mempertimbangkan beberapa faktor di atas, sanggup diintepretasikan kondisi air bawah tanah di suatu daerah, yaitu dengan melokalisir lapisan batuan berpotensi air bawah tanah.
Pengukuran besarnya tahanan jenis batuan di bawah permukaan tanah dengan menggunakan metode Vertical Electrical Sounding (VES) dilakukan untuk mengetahui susunan lapisan batuan bawah tanah secara vertikal, yaitu dengan cara memperlihatkan arus listrik ke dalam tanah dan mencatat perbedaan potensial terukur. Nilai tahanan jenis batuan yang diukur eksklusif di lapangan yaitu nilai tahanan jenis semu (apparent resistivity), dengan demikian nilai tahanan jenis di lapangan harus dihitung dan dianalisis untuk mendapat nilai tahanan jenis bergotong-royong (true resistivity) dengan metode Schlumberger. Selanjutnya untuk pengolahan dan perhitungan data lapangan untuk mendapat nilai tahanan jenis yang sebenarnya, serta intepretasi kedalaman dan ketebalannya dipakai perangkat lunak komputer. Berdasarkan nilai tahanan jenis sebenarnya, maka sanggup dilakukan interpretasi macam batuan, kedalaman, ketebalan, dan kemungkinan kandungan air bawah tanahnya, sehingga didapatkan citra daerah-daerah yang berpotensi mengandung air bawah tanah serta sanggup ditentukan rencana titik-titik pemboran air bawah tanah.
Seperti apa balasannya dan bagaimana memanfaatkan datanya ?
Berdasarkan hasil pengukuran lapang dibentuk kurva resistivity semu, kemudian diinterpretasikan dengan menggunakan software IPI2WIN. Software ini akan menghasilkan resistivitas yang aktual untuk masing-masing lapisan menurut kurva resistivitas semu dengan menggunakan algoritma Newton untuk meminimalisir regularized fitting error secara otomatis. Hasil interpretasi grafik resistivitas disajikan pada Gambar 3.
Gambar 3: Hasil interpretasi grafik resistivitas
Selanjutnya sanggup diidentifikasi jenis lapisan yang merfleksikan lapisan overburden yang bersifat kurang dan tidak lulus air dengan nilai resistivitas berkisar 350 Ohm meter.
Secara umum hasil identifikasi air tanah menyajikan citra stratifikasi Hidrogeologi dari penampang tanah yang diukur resivitasntya mulai dari lapisan atas ke bawah adalah. Letak kedalaman dan ketebalan dari setiap komponen stratifikasi geologi di setiap blok yang diamati bervariasi yang mencerminkan dinamika letak dan potensi air tanah yang ada di titik pengukuran dan biasanya memiliki urutan stratifikasi dari lapisan atas kebawah yaitu Overbuden, Aquifer1, Aquitard1, Aquifer2 dan Aquitard2 ibarat yang diilustrasikan pada gambar 4.
Overburden adalah: lapisan partikel tanah, batuan atau material lainya yang berada di atas batuan induk atau lapisan lain yang memiliki nilai ilmiah atau nilai hemat ibarat materi tambang( emas, kerikil bara, minyak bumi dan lainya) atau air tanah.
Aquifer yaitu lapisan di bawah permukaan tanah yang terdiri dari deretan atau kelompok deretan satuan geologi yang tembus air (permeable) baik yang terkonsolidasi (misalnya lempung) maupun yang tidak terkonsolidasi (pasir) dengan kondisi jenuh air dalam jumlah yang cukup banyak.
Aquitard yaitu lapisan, formasi, atau kelompok deretan geologi yang lulus air (permable) dengan nilai konduktivitas hidraulik yang kecil namun masih memungkinkan air melewati lapisan ini walaupun dengan gerakan yang lambat. Dapat dikatakan juga merupakan lapisan pembatas atas dan bawah suatu lapisan aquifer setengah tertekan (semi confined aquifer).
Berdasarkan letak dan potensinya akuifer dibedakan menjadi akuifer bebas, akuifer setengah tertekan dan akuifer tertekan.
Akuifer bebas yaitu akuifer yang memiliki bidang penggalan atas berupa zona tidak jenuh air dan dibatasi oleh muka air bawah tanah. Besarnya kandungan dan luas penyebaran air bawah tanah yang tersimpan di dalam akuifer bebas sangat dipengaruhi oleh iklim terutama curah hujan, relief dan kemiringan lahan, jenis litologi, vegetasi dan kondisi lingkungan, dengan demikian debitnya sangat dipengaruhi oleh keseimbangan antara imbuhan (recharge) dari lingkungan sekitarnya (air hujan dan rembesan samping) dengan volume yang di eksploitasi.
Akuifer setengah tertekan yaitu Merupakan akuifer yang jenuh air yang dibatasi oleh lapisan atas berupa aquitard dan lapisan bawahnya merupakan aquiclude. Pada lapisan pembatas di penggalan atasnya lantaran bersifat aquitard masih ada air yang mengalir ke akuifer tersebut (influx) walaupun hidraulik konduktivitasnya jauh lebih kecil dibandingkan hidraulik konduktivitas akuifer. Tekanan airnya pada akuifer lebih besar dari tekanan atmosfir.
Akuifer tertekan yaitu Merupakan akuifer yang jenuh air yang dibatasi oleh lapisan atas dan bawahnya merupakan aquiclude dan tekanan airnya lebih besar dari tekanan atmosfir. Pada lapisan pembatasnya tidak ada air yang mengalir (no flux).
Gambar 4: Ilustrasi penampang profil stratifkasi lapisan geohidrologi Kebun Surya Adi
Gambaran kuantitatif potensi air tanah di setiap lapisan tersebut umumnya disajikan dalam bentuk data tabular ibarat yang disajikan pada tabel 1 dan atau data grafik ibarat yang disajikan pada gambar 5.
Tabel 1. Hasil pengukuran air tanah yang memperlihatkan potensi, kedalaman, ketebalan dan kualitas air tanah
Gambar 5. Ilustrasi hasil pengukuran air tanah di Kodibangedo, Sumba Barat
Pemanfaatan data hasil pengukuran air tanah
Data hasil pengukuran air tanah sanggup dipakai sebagai dasar dalam memilih titik lokasi pembuatan sumur bor terutama untuk mengeksploitasi air tanah dalam. Di bidang pertanian penggunaan air tanah dalam sebagai alternatif irigasi suplementer merupakan salah satu pilihan untuk daerah pertanian yang memiliki hambatan keterbatasan air permukaan. Berdasarkan data hasil pengukuran air tanah, lokasi yang disarankan untuk dilakukan pengeboran yaitu air tanah dalam (akuifer tertekan) yang memiliki kedalaman lebih dari 40 meter, pertimbangannya yaitu pada kedalaman tersebut secara hidrogeologi umumnya air tanahnya merupakan air tanah dalam yangtidak dipengaruhi oleh kondisi fluktuasi air permukaan. Dengan demikian eksploitasi air tanah yang akan dilakukan tidak akan menjadi kompetitor pemanfaatan air untuk keperluan domestik. Untuk mengetahui potensi debit sumur yang akan dieksploitasi dilakukan uji pompa (pumping test) menggunakan pompa irigasi, alat pengukur kedalaman muka air tanah (contack gauge) serta stopwatch.
Pemanfaatan air tanah dalam sebagai alternatif irigasi suplementer
Dengan semakin terbatasnya ketersediaan air perrmukaan, pemanfaatan air tanah sebagai irigasi suplementer pada budidaya pertanian menjadi alternatif yang tidak terelakan. Tergantung kandungan potensinya, air tanah tidak hanya dimanfaatkan untuk irigasi suplementer tumbuhan semusim akan tetapi juga sanggup dijadikan sebagai solusi irigasi untuk tumbuhan tahunan. Tentu saja semoga pemanfaatan air tanah dalam untuk irigasi suplementer menjadi lebih efisien dibutuhkan proteksi analisis kebutuhan air tumbuhan untuk mendapat ketika tanam yang optimal semoga defisit air pada fase kritis pertumbuhan tumbuhan sanggup dihindari sehingga sanggup ditekan kehilangan hasil pada daerah-daerah yang pasokan airnya terbatas.
Beberapa pola pemanfaatan air tanah dalam untuk menjamin kesinambungan produksi dan produktivitas antara lain yaitu budidaya pertanian terpadu dengan komoditas jagung hibrida, sayuran, pakan ternak dan jarak pagar seluas 5 ha di Desa Bayan, Lombok Nusa Tenggara Barat (Gambar 6). Upaya pemanfaatan air tanah dalam sebagai alternatif irigasi suplementer pada kebun bibit kelapa sawit PT. Sampoerna Agro, TBK., di Mesuji, Ogan Komering Ilir, Sumatera Selatan ( Gambar 7) dan pendayagunaan sumberdaya air tanah untuk pengembangan komoditas sayuran, jagung dan kelapa di Amanuban Selatan, Kabupaten Timor Tengah Selatan, Nusa Tenggara Timur (Gambar 8).
Gambar 6. Pemanfaatan air tanah dalam sebagai alternatif irigasi suplementer pada budidaya pertanian terpadu dengan komoditas jagung hibrida, sayuran, pakan ternak dan jarak pagar seluas 5 ha di Desa Bayan, Lombok Nusa Tenggara Barat.
Gambar 7. Pemanfaatan air tanah dalam sebagai alternatif irigasi suplementer pada kebun bibit kelapa sawit PT. Sampoerno Agro, TBK., di Kecamatan Mesuji, Ogan Komering Ilir, Sumatera Selatan.
Gambar 8. Pendayagunaan sumberdaya air tanah untuk pengembangan komoditas sayuran, jagung dan kelapa di Amanuban Selatan, Kabupaten Timor Tengah Selatan, Nusa Tenggara Timur. Sumber http://hendrilune.blogspot.com/
0 Response to "Hidrologi Pertanian"
Posting Komentar